
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DYNAMIC-PROGRAMMING
APPROACHES TO SINGLE- AND

MULTI-STAGE STOCHASTIC KNAPSACK
PROBLEMS FOR PORTFOLIO

OPTIMIZATION

by

Khoo, Wai Gea

March 1999

Advisor:
Second Reader:

R. Kevin Wood
David P. Morton

Approved for public release; Distribution is unlimited.

DTIC QUALITY INSPECTED 4 19990419 056

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je®erson Davis Highway, Suite 1204,
Arlington, Va 22202-4302, and to the 0± ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE Dynamic-Programming Approaches to Single-
and Multi-Stage Stochastic Knapsack Problems for Portfolio Optimization

6. AUTHORS Khoo, Wai Gea

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(mazim-um 200 words)

This thesis proposes new methods, based on dynamic programming, for solving certain single-stage and
multi-stage integer stochastic knapsack problems. These problems model stochastic portfoko-optimization prob-
lems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean
and variance for each item type. Given an initial wealth, the objective is to select a portfolio that maximizes the
probability of achieving or exceeding a specified final return threshold; the multi-stage problem allows revisions
of the portfolio at regular time intervals. An exact method is developed to solve a single-stage SPOP with
independence of returns among item types. For a problem from the literature with 11 item types, this method
obtains an optimal solution in a fraction of a second on a laptop computer. An approximation method, based
on discretization of possible wealth values, is developed to solve a multi-stage SPOP with inter- and intra-stage
independence of returns among item types. Running on a desktop computer, this approximation method solves
a 3-stage problem with 6 item types in under 12 minutes. With finer discretization in a 3-stage problem with 8

item types, the solution time is about 46 minutes.

14. SUBJECT TERMS Dynamic Programming, Stochastic Programming,
Knapsack Problem (Single-Stage, Multi-Stage), Portfolio Optimization

15. NUMBER OF
PAGES 72

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standaid Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

DYNAMIC PROGRAMMING APPROACHES TO
SINGLE- AND MULTI-STAGE STOCHASTIC
KNAPSACK PROBLEMS FOR PORTFOLIO

OPTIMIZATION

Khoo, Wai Gea
Ministry of Defence, Republic of Singapore

B.Eng. (Mechanical), National University of Singapore, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by:

R. Kevin Wood, Thesis Advisor

.^""'"TDavid P. Morton, Second Reader

Richard E. Rosenthal, Chairman
Department of Operations Research

m

IV

ABSTRACT

This thesis proposes new methods, based on dynamic programming, for solving

certain single-stage and multi-stage integer stochastic knapsack problems. These

problems model stochastic portfolio-optimization problems (SPOPs) which assume

deterministic unit weight, and normally distributed unit return with known mean

and variance for each item type. Given an initial wealth, the objective is to select

a portfolio that maximizes the probability of achieving or exceeding a specified final

return threshold; the multi-stage problem allows revisions of the portfolio at regular

time intervals. An exact method is developed to solve a single-stage SPOP with

independence of returns among item types. For a problem from the literature with

11 item types, this method obtains an optimal solution in a fraction of a second on

a laptop computer. An approximation method, based on discretization of possible

wealth values, is developed to solve a multi-stage SPOP with inter- and intra-stage

independence of returns among item types. Running on a desktop computer, this

approximation method solves a 3-stage problem with 6 item types in under 12 minutes.

With finer discretization in a 3-stage problem with 8 item types, the solution time is

about 46 minutes.

VI

DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at risk of the user.

Vll

Vlll

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1. Single-Stage Stochastic Knapsack Problems 1

2. Multi-Stage Stochastic Knapsack Problems 4

B. SCOPE 6

II. A SINGLE-STAGE STOCHASTIC KNAPSACK PROBLEM

(SSKP) 7

A. MATHEMATICAL FORMULATION OF SSKP 7

B. ASSUMPTIONS AND REFORMULATION 8

C. DYNAMIC PROGRAMMING FOR SSKP 9

1. Concept 10

2. Algorithm Details 12

3. Algorithm DSSKP 16

4. Computational Results 19

5. Comments 20

III. A MULTI-STAGE STOCHASTIC KNAPSACK PROBLEM

(MSKP) 23

A. MATHEMATICAL FORMULATION OF MSKP 23

B. ASSUMPTIONS AND REFORMULATION 26

C. DYNAMIC PROGRAMMING FOR THE OVERALL PROBLEM 28

1. Concept 28

2. Algorithm DMSKP 30

D. EXPLICIT MIXED-INTEGER PROGRAMMING FOR

THE SUB-PROBLEMS 31

1. Model Formulation 31

2. Preprocessing 35

IX

E. COMPUTATIONAL RESULTS 39

IV. CONCLUSIONS AND FUTURE WORK 43

LIST OF REFERENCES 47

INITIAL DISTRIBUTION LIST 49

LIST OF TABLES

I. Steinberg and Parks (1979) data with an additional riskless item. ... 20

II. Details of Test Problems 1 and 2 40

III. Computational results for MSKP1 using DMSKP (Times measured in

minutes.) 40

XI

xn

LIST OF SYMBOLS

Symbols in bold font are the vector form of the variables or parameters rep-

resented by the corresponding symbols in regular font. For example, r is the vector

form of r.

The index of an element in a vector is represented as a subscript. The variables,

parameters and solution sets related to time t in a multi-stage problem are labeled

with the subscript t; for elements of a vector, t is the index after the element index.

For example, xkt is the fcth element of vector x at time t. Other subscripts and

superscripts, which can be easily understood by the context in which they exist, are

noted in the following list:

_ " Lower and upper bounds, respectively, of the argument

' "~" Intermediate or non-optimal representations of a variable or parameter

* superscript indicating optimal solution of a problem

+ Subscript index of positive integer set; superscript index of an optimal objec-
tive value

— Subscript index of negative integer set; superscript index of an optimal objec-
tive value

a Abitrary constant

c Desired minimum total return, or total return threshold

det Determinant of a matrix

E Mathematical expectation operator

/ Function (optimal value function in a dynamic programming procedure)

h Probability density function

i Subscript index for total mean return

X Set of total mean in returns

j Subscript index for total variance in return

Xlll

3 Set of total variance in returns

k Subscript index of item type

K Number of item types; as a superscript, the dimension of a set

K Set of candidate portfolio items

I Index of an item among its type; quantity of an item type

L Maximum quantity affordable for an item type

£ Set of affordable quantities of items

min Subscript for a minimum value

n Superscript index for level of wealth realization

N Normal distribution; number of possible wealth realization levels

P Probability function

p Probability

r Unit return of an item

t Subscript index for time

T Length of planning horizon for a multi-stage problem; as a superscript, the
transpose of a vector; as a subscript, the end of a planning horizon

U Utility value or function

U Set of values for total mean return

v Total or unit variance in return

V Set of values for total variance in return

w Weight or cost of an item

W Capacity of knapsack; available wealth for investment

x Quantity of items, which are of the same type, to include in the portfolio

X Solution set of a portfolio decision

y Decision (indicator) variable

Z The set of integers

xiv

Z Standard normal quantile

ß Total or unit mean return

$ Standard normal cumulative distribution

p Objective function value

(Objective function value

xv

XVI

LIST OF ABBREVIATIONS

DMSKP A dynamic-programming algorithm to a multi-stage stochastic knapsack
problem

DP Dynamic program

DSSKP A dynamic-programming algorithm to a single-stage stochastic knapsack
problem

EMIP A function call to an explicit mixed-integer programming model

EMIPI An explicit mixed-integer programming model with integer mean, variance
and portfolio constraints

EUSP A sub-problem maximizing an expected utility

IP Integer program

KP Knapsack problem

MAX A variance maximization problem

MAXVAR A variance maximization algorithm

MIN A variance minimization problem

MIP Mixed-integer program

MSKPO A variant of a multi-stage stochastic knapsack problem

MSKP1 A variant of a multi-stage stochastic knapsack problem

NLP Non-linear program

SDP Stochastic dynamic program

SKP Stochastic knapsack problem

SKPO A variant of a single-stage stochastic knapsack problem

SKP1 A variant of a single-stage stochastic knapsack problem

SKP la A variant of a single-stage stochastic knapsack problem

SPOP Stochastic portfolio-optimization problem

VMAX1 A variance maximization problem

xvii

VMINO A variance minimization problem

VMIN1 A variance minimization problem

xvni

EXECUTIVE SUMMARY

This thesis develops new methods for solving certain probabilistic versions of

portfolio selection problems, in short, "stochastic portfolio-optimization problems."

In these problems, each item type of the portfolio has deterministic unit cost, but

probabilistic unit return value with known probability distribution. We assume a

normal distribution in our study. Given an initial wealth, an investor would like to

determine a portfolio with the best probability of achieving or exceeding a specified

return threshold. The stochastic portfolio-optimization problems are closely related to

"stochastic resource-allocation problems" which expend limited resources to acquire

a system with maximized expected utility. Hence, the proposed solution techniques,

with modifications, have wide applications in resource-allocation problems such as

cargo loading, capital budgeting, project selection and weapons-mix problems.

The problems considered in this thesis assume that the returns for all item

types are independent of each other. The first problem involves selection of a portfolio

which cannot be altered until the end of an investment period when the portfolio is

cashed; hence, it is called a "single-stage stochastic portfolio-optimization problem."

We develop a method that provides an exact solution to this single-stage problem.

This method examines each item type one by one, and considers different possible

mixes of item-type quantities to yield specific mean and variance pairs for returns.

Hence, the problem is decomposed into smaller and more manageable problems. At

the examination of the last item type, an optimal portfolio, which has the highest

probability of achieving or exceeding the return threshold, is selected. This stage-

by-stage solution approach is a classical example of dynamic programming. For a

problem from the literature with 11 item types, this method obtains an optimal

solution in a fraction of a second on a laptop computer.

The problem just described involves a one-time decision. In practice, portfolios

are revised at regular time intervals during the planning horizon. These stochastic

xix

problems need decisions based on sequences of outcomes revealed over time; hence,

these are multi-stage problems. We also consider, in this thesis, a multi-stage stochas-

tic portfolio-optimization problem which assumes that the returns for all item types

are independent of each other not only at a specific point in time, but also across

time. An approximation method, based on an extension of the classical dynamic-

programming technique, is developed for this multi-stage problem. Running on a

desktop computer, this approximation method solves a 3-stage problem with 6 item

types in under 12 minutes. A more precise approximate solution is obtained for a

3-stage problem with 8 item types in about 46 minutes. A possible improvement to

our approximation method through the use of a sampling approach is also suggested

at the end of the thesis.

In this thesis, we have shown the relevance and efficiency of dynamic-program-

ming approaches to solving single- and multi-stage stochastic portfolio-optimization

problems. Moreover, our multi-stage method, with modifications, has the potential

to handle problems with certain dependencies among the item types. These de-

pendencies add more realism to our problems, and extend them to possible future

developmental work.

xx

ACKNOWLEDGMENTS

The author would like to express sincere gratitude to Professor Kevin Wood for

his patient guidance during the thesis research and development. The author would

also like to thank Professor David Morton for his precious advice and assistance in

correcting the thesis, and Professor Gerald Brown for his kind advice to the multi-

stage problem. Finally, the author is indebted to his friends and family who have

showed understanding and support during the preparation of this thesis.

xxi

xxn

I. INTRODUCTION

This thesis proposes new methods, based on dynamic programming (DP), for

solving some stochastic variants of the classical general integer knapsack problem. In

particular, we consider single- and multi-stage stochastic portfolio-optimization prob-

lems (SPOPs) which assume deterministic unit weight, and normally distributed unit

return with known mean and variance for each item type. Given an initial wealth,

the objective is to select a portfolio that maximizes the probability of achieving or

exceeding a final return threshold. We develop solutions for a single-stage (single-

period) integer SPOP with independence of returns among the various item types in

the portfolio, and a multi-stage (multi-period) integer SPOP with inter- and intra-

period independence among item types. These problems, along with associated so-

lution techniques, relate closely to single-stage stochastic knapsack problems, single-

and multi-stage portfolio-optimization problems, multi-stage stochastic programs and

stochastic dynamic programs. These problems are also related to stochastic resource-

allocation problems. Hence, the proposed solution techniques, with modifications,

have wide applications in problems such as cargo loading, capital budgeting, project

selection and weapons-mix problems.

A. BACKGROUND
This section provides some background on the single- and multi-stage stochas-

tic knapsack problems (SKPs) which we solve in this thesis.

1. Single-Stage Stochastic Knapsack Problems

In the classical knapsack problem, a hiker wishes to determine which of a set

of items to carry on a backpacking trip. Each item has a weight and a "return value"

to the hiker. Given a knapsack with limited weight capacity, the hiker wishes to

determine the load to pack, so as to achieve the most valuable total return. This

problem is also known as the flyaway kit problem (Taha 1992, pp. 358). It becomes

1

a general integer problem when the hiker can pack more than one unit of a particular

item type.

In a stochastic variation of the knapsack problem, the returns from each item

are random with known distributions. Random returns are common in the real world.

For example, the returns of different financial instruments such as stocks and bonds,

the revenue from a production plant or project, and the damage on a target resulting

from a missile attack are all random in nature.

The integer SKP that we study here may be described as follows:

Indices

k item type, k 6 K, = {1,2,..., K}

I index of an item among its own type, / € {1,2,..., Lk}

Data

Tki return for item I of type k; the marginal distribution of r« is assumed to be
normal with mean \xk and variance vk, i.e., rkt ~ N(iJ,k, Vk) V k, I;
r = (rn, r12,..., r1Ll, r2i,..., rKLlc)

T

(Different variants of SKP arise with different distributions for and dependency
structure among the r^.)

Wk deterministic weight of each type-fc item, wk E Z+V k

c desired minimum total return, i.e., the total return threshold

W capacity of the knapsack, W € Z+

Decision Variables

jjki 1 if item / of type A; is included in the knapsack; else 0
y = (yn, i/i2,..., yiLi, 2/21, • • •, VKLK)

T

Formulation

GSKP(VT)
(K Lk

k=l 1=1

K Lk

s.t. J212Wkyki - w

k=l 1=1

ykl E {0,l}Vfce/C, l = l,2,...,Lk.

Here, Td=i Vki is the number of items of type k to be included in the knapsack.

The deterministic weight of each type k item is a positive integer wk and W is the

known, integer capacity of the knapsack. The returns rfcl, ..., rkLk for a specific item

type k are identically and normally distributed with mean \xk and variance vk. In

some situations, this distributional form is reasonable, and furthermore, it leads to

computationally tractable models.

The problem in GSKP(W) is to select an optimal y that maximizes the prob-

ability that the total return rTy meets or exceeds threshold c. Depending on the

specific problem, there might be dependency in the unit return among items of the

same type. In this thesis, we describe the extent of dependency among items of

the same type with "complete independence," "partial dependence" and "complete

dependence within item types." Similarly, for zero, partial or perfect dependency

among the return from items of different types, we use the descriptions of "complete

independence," "partial dependence" and "complete dependence among item types,"

respectively.

Carraway, Schmidt and Weatherford (1993) use "generalized dynamic pro-

gramming" developed by Carraway, Morin and Moskowitz (1989) to solve GSKP(VF)

when there is complete independence among and within all item types. The more

efficient techniques of Morton and Wood (1998) are applicable not only to this com-

pletely independent case, but also (with modifications) to situations where returns

are identical within an item type, i.e., when there is complete dependence within item

types. In the latter case, the SKP corresponds to investment in multiple financial in-

struments such as stocks and bonds. The cost of each share of stock k is Wk dollars,

the total wealth available for investment, is W dollars, and the return from every share

of stock k is rk, which is a normal random variable. The objective is to invest limited

assets so as to maximize the probability of achieving or exceeding a specified return.

Hence, this model may be viewed as a simple, single-period SPOP; we develop a DP

method for solving this problem in this thesis.

The portfolio-optimization version of the model GSKP(W) may be simplified

to:

SKPO(W)

max P \.J2rkxk >c\

K

s.t. ^2wkxk < W
k=i

xk E Z+WkeK

where r^ = r^i = rki — • ■ ■ = rkLk, w.p.l, and Xk is the number of type-A; items to

include in the portfolio.

The objective function expresses a variant of the "safety-first criterion" (Pyle

and Turnovsky 1970). For this criterion, a disaster level of returns is first specified;

the objective is to minimize the probability that the actual total return is worse (less)

than or equal to the disaster level. The objective in SKP0(W) is essentially equivalent

to this criterion.

2. Multi-Stage Stochastic Knapsack Problems

A single-stage problem involves a "one-time" decision. In practical planning

problems such as production scheduling and power capacity expansion, it is not un-

common to find that multiple decisions are required at different phases of the planning

horizon. These problems need decisions based on sequences of outcomes revealed over

time (Birge and Louveaux 1997, pp. 128).

Consider a multi-stage problem expanded from the single-stage SKPO(W).

The scenarios are standard to most multi-stage portfolio models: We begin with

fixed capital, we invest in a set of financial instruments, we review and modify our

investment portfolio after certain period of time has elapsed, and repeat this for a

specified number of time periods. Our objective is to maximize the probability that

we achieve or exceed a final target for total wealth (although other objectives are

possible). We assume that no fee is charged for any transaction and no money is

borrowed for investment. We are, therefore, only concerned about the uncertainty

in the returns of the financial instruments. In addition, at the end of each time

period, the portfolio rebalancing decision is only restricted by the available wealth

accumulated from investments in the previous periods. The exact problem is defined

in Chapter III.

The multi-stage SKP described above might be handled using the methods

developed for the more general "multi-stage stochastic programming problems." Birge

and Louveaux (1997, pp. 233-252) describe some of the exact methods that have been

implemented with some success. Because exact methods are restricted to solving

problems of moderate size and complexity, approximations (with deterministic or

probabilistic bounds on accuracy) are often used to provide good solutions. Birge

and Louveaux (1997, pp. 353-370) also discuss some of these techniques.

Much recent work on multi-stage stochastic programming involves developing

models for financial planning problems faced by investment firms and corporations

with large portfolios, e.g., insurance companies (Cariiio et al. 1994). Such efforts

include Klaassen's (1998) use of a state and time aggregation method in stochastic

programming models for asset/liability management, and Hiller and Eckstein's (1993)

use of massively parallel Benders decomposition in solving a stochastic portfolio model

for fixed income asset/liability management. These models consider more complex

economic factors than our problem, such as the uncertainty in interest rates and the

need for liability management resulting from loans made. Hiller and Eckstein (1993)

adopt an efficient frontier approach (Sharpe 1970, pp. 52): this provides the portfolio

manager with a set of portfolios that are efficient with respect to risk and return,

rather than a portfolio that is optimal with respect to a single composite criterion.

None of the above approaches fits well into our problem of determining an optimal

initial portfolio decision based only on uncertain returns.

Stochastic dynamic programming (SDP) is a natural choice for our multi- stage

SPOP. It is similar to deterministic dynamic programming except that decisions at

a particular stage t depend on the realizations that have occured up to that point

in time. A short discussion of SDP can be found in Kail and Wallace (1994, pp.

124-129).

B. SCOPE
Morton and Wood (1998) state that their DP algorithm for the independent

case may be extended to the dependent case, i.e., when there is complete dependence

within item types. But those authors do not provide details. In Chapter II, we

establish a variant of Morton and Wood's DP algorithm to handle the portfolio-

optimization model SKPO(W) with complete dependence within item types, and

complete independence among item types. In Chapter III, the model SKPO(W^) is

expanded to a sequential multi-stage decision problem. We then a new DP-like algo-

rithm for solving this multi-stage portfolio-optimization model with complete inter-

and intra-stage independence among the item types. Finally, we conclude this thesis

and propose some future developmental work in Chapter IV.

II. A SINGLE-STAGE STOCHASTIC
KNAPSACK PROBLEM

(SSKP)

In this chapter, we present a dynamic-programming solution to the single-stage

portfolio-optimization model SKPO(VF) with complete dependence within each item

type as well as complete independence among item types. This solution is a variation

of Morton and Wood's dynamic programming method (1998), which assumes com-

plete independence within each item type. Hence, much of this chapter parallels that

paper.

A. MATHEMATICAL FORMULATION OF SSKP
The problem which we wish to solve is re-stated for clarity as follows:

Indices

k item type, k 6 K = {1,2, ...,K}

Data

rk return for each item of type k; the marginal distribution of rk is assumed to
be normal with mean ßk and variance vk, i.e., rk ~ N(ßk, vk) V k;
r = (ri,r2,...,rK)T

wk deterministic cost of each item of type k, wk E Z+V k

c desired minimum total return, i.e., the total return threshold

W initial total wealth, W e Z+

Decision Variables

xk number of type-fc items to include in the portfolio, x = (xi, x2,..., XK)
T

Formulation

SKPO(W)

max P I 5^ rkxk > c

K

s.t. ^2,wkxk < W
k=i

xk € Z+VkelC

B. ASSUMPTIONS AND REFORMULATION
For the purpose of model formulation, we make the following assumptions:

1. The mean of all item types can be integerized through scaling and rounding
with little loss of accuracy, when necessary. Therefore, we assume that fj,k E
Z+VkeK.

2. The returns are independent among item types, i.e., vab = 0 V a,b e JC, a^b,
where vab denotes the covariance between the returns of item types a and b.

3. There is one and only one riskless item for the portfolio. A riskless item,
classified to be type k = 1 throughout this thesis, has return r-i ~ N{^i, 0)
where ßi >Wi.

4. The initial wealth W > minfcgx:^; this simply implies that the optimal knap-
sack will not be empty.

5. The threshold c is greater than the total return from a portfolio of riskless
items, i.e., c > Hi[W/wi\ where [a\ denotes the largest integer not exceeding
a. Hence, the threshold c cannot be achieved with probability one.

6. There exists at least one feasible solution x with positive total variance. Thus,
P(E*L1rfca;jfe > c) > 0.

The last three assumptions allow us to focus on portfolios with positive variance;

portfolios with only riskless items, i.e., zero variance, are handled as special cases.

We now reformulate SKPO(W) using an equivalent deterministic objective

function. For compact representation of the problem, the following vector notation is

used:

8

unit returns, r = (ri, r2,..., TK)
T

,

portfolio, x = (xi,X2,...,XK)
T

,

unit cost, w = (wi, 1V2,..., WK)
T

,

unit mean returns, (JL = (//i, //2> • • • > AtAr)T, and

unit variance in returns, v= (t>i, V2,..., VK)
T■

Since Tk ~ N(ßk, Vk), the total return of portfolio x is given by

ZkeKrkXk = rTx ~ N{nTx, vTx2)

where x2 = {x\,x\,..-,x2
K). Therefore, we may convert the problem in SKPO(W)

to a non-linear optimization problem. With the implicit constraint of positive total

variance, i.e., vTx2 > 0, problem SKPO(W) may be reformulated as

SKP1(W)

p*(W) = min (c-^xVvVTx2

s.t. wTx < W

x € Z*

The deterministic objective function is valid because

P(rTx>c) = P(
TT
"-^>

C
—

VTX2

= p{mi)> ^g) (HD
given vTx2 > 0, and therefore, the probability of achieving the return threshold c

is maximized by minimizing the right-hand side of the inequality. This gives the

objective function of SKP1(W).

C. DYNAMIC PROGRAMMING FOR SSKP
In this section, we present a DP algorithm DSSKP to solve SKP1(W) or,

equivalent^, SKPO(W).

1. Concept

Suppose that ji and ß are, respectively, valid lower and upper bounds on

/iTx*(W) where x*(W) is an optimal solution to SKP1(W). Furthermore, assume

that ß is tight, i.e., ß = ß*{W) where ß*(W) is determined by solving a simple

deterministic knapsack problem:

KP (WO

/i*(W) = max ^*Tx

s.t. wTx < W

x € Z*.

In this thesis, we set \i = minfc€A; ßk- For problems of larger scale, ß can be set tighter.

Now, define U = {//, // + 1,..., ß} and re-arrange SKP1(W) to obtain

SKPla(W)

p*(W) = min min (c - //)/Vvrx2

s.t. //Tx = ^

wTx < W

x G Zf.

As noted by Morton and Wood (1998), for fixed ß < c, p*(W) is minimized

when vTx2 is maximized, and for fixed \x > c, p*(W) is minimized when vTx2 is mini-

mized, ß = c is a special case in which the objective value is zero. Consequently, there

are three cases to consider for solving SKP1(W) based on the ß =p*(W) determined

by KP(W).

a. Case 1, ß < c

In this case, for each ß E U, we first solve

10

MAX(W,n)

C+()u) = max vTx2

s.t. /zTx = fi

wTx < W

xeZf

for optimal solution x'(/x). For any fi such that MAX(W,//) is infeasible, we define

C+(/u) = —oo. Then, the optimal objective value of SKPla(W) is

pew|c (/i)>-oo v

Hence, any solution in (J {X'QLI)} which satisfies (c — /x)/yvTx/2(/i) = p*(W) is an

optimal solution to SKPla(W) and therefore SKP1(W). It can be reasoned from

(III) and the objective function of SKPla(W) that, in this case,

0 < p*(W) < oo;

hence,

0<P(rrx*(WO>c) <0.5.

b. Case 2, ß = c

Since ß is a tight upper bound, there exists a feasible solution x'(c)

to SKPla(W). Let x'(c) denote the solutions to KP(V7) that achieved /iTx'(c) = c.

This is an optimal solution to SKPla(W) since it yields an objective value of zero

which is higher than any of the objective values in Case 1 (ß < c). Hence,

p*(W) = 0,

and

P(rTx*(W)>c)=0.5.

Note that the total variance of x*(W) is irrelevant in this case. We

ignore variance and take any optimal solution of KP(W).

11

c. Case 3, fi > c

In this case, we first define the lower bound on ß as // = max{^, \c]}

(where \-~\ is the ceiling operator that returns the smallest integer not less than its

argument). Then, we solve

MIN(W, fi)

C (//) = min vTx2

s.t. /xTx = ß

wTx < W

x € Zf

for x!(ß), for each ß e W — {fi',fi' + l,...,ß}. Similar to MAX(W,/x), we define

C~(AO = oo for any yu such that MIN (TV, fi) is infeasible. Then, the optimal objective

value of SKPla(TV) is

^)= «Ä (c-ß)/^Hß)).
ti€U\(~ (/i) <oo v

Hence, any solution in |J {x-'(ß)} which satisfies (c —//)/yv2V%u)) = p*(W) is an

optimal solution to SKPla(TV) and therefore SKPl(TV). In this case,

-oo<p*(TV)<0

<s>0.5<P(rrx*(TV)>c) <1.

2. Algorithm Details

We use a three-phase algorithm to solve SKPl(TV): Phase 1 solves KP (TV) to

determine which of Cases 1, 2 or 3 to consider for solving the problem. If Cases 1

or 3 are considered, Phase 2 solves a series of MAX(TV, ß) or MIN(W, ß) problems.

Phase 3 extracts and prints the optimal solutions determined.

a. Phase 1

Phase 1 solves KP(W), a standard knapsack problem, using the follow-

ing basic DP formulation (Dreyfus and Law 1977, pp. 108-110):

12

DP Recursion for solving KP(W)

Optimal Value Function

ß*(w) = maximum total mean return attainable with available wealth w.

Recurrence Relation for w = itw, wmin +1,..., W where lUmü, = minfcG/c Wk-

p*(w) = maxk(zK {ß*{w-wk) + ßk}.

Boundary Conditions

*/ \ _ / —°°' w <0
»W ~ \ 0, 0<w<wmin-l.

Answer

ß*{W).

Now, if Phase 1 determines that ß*{W) = c, the algorithm will skip to Phase 3

where an optimal solution is extracted. Otherwise, Phase 2 is run to determine the

maximum variance in returns by solving MAX(W,/z) for all ß E U if ff(W) < c, or

the minimum variance in returns by solving MIN(W, ß) for all ß e W if ß*(W) > c.

b. Phase 2

Let MAXE(w, ß) be the problem MAX(W, ß) with the constraint wrx <

W replaced by wTx = w. In this phase, MAX(W, ß) for each ß e U are solved by

first determining the solutions to MAXE(w,^) for w G {w,w+ 1,...,W} where

w = minfcexWfc. After that, a solution that yields the lowest objective value of

SKP1(W) is selected. In the same way, solutions of MlN(W,ß) for each ß e W are

determined by solving a series of problems MINE(tü, ß) which is defined analogously

toMAXE(w,/i).

The standard DP algorithm for the simple KP is extended to solved the

two-constraint integer programs (IPs) MAXE(Iü,^). In each stage of the algorithm,

13

only one item type is considered for knapsack loading. Hence, the index of the item

types, A;, is used as the stage number. The DP formulation is:

DP Recursion for solving MAXE(W, ß)

Optimal Value Function

fk(w', ß') = maximum total variance in return from investing in item types
0, 1, ... ,k given that wealth w' has been invested and a total
return of ß' is expected. Item type 0 is a dummy item type
for boundary definition.

Recurrence Relation for k = 1,2,..., K, w' = Wmin, «w + 1,..., w, // = ßmjn, ß„ün+
1,..., ft where tumin = minfc6jc wk, /imi„ = mim^x: ßk

fk(w', /j?) = maxIfce{o,...,ifc}{/fc-i(w/ - wkxk, p! - fikxk) + vkxQ

where xk = min{[w'/wk\, [ß'/ßk\}.

Boundary Conditions

fo{w', fi') = -oo, w' < wmin -l,w'^ 0, ß' < ßmin - 1, ß' =£ 0

/fc(0,0) = 0, k=l,2,...,K.

Answer

fK(w,ß).

The above DP formulation may be modified to solve MINE(tu, ß):

DP Recursion for solving MINE(W; ß)

Optimal Value Function

fk(w', ß') = minimum total variance in return from investing in item types
0, 1, ..., k given that wealth w' has been invested and a total
return of // is expected. Item type 0 is a dummy item type
for boundary definition.

14

Recurrence Relation for k = 1,2,..., K, w' = wmm, wmiri + 1,..., w, \i! = /w, ^min+
1,..., [i where w = muifcex: Wk, ß = minfce/c ßk

fk(w', //') = mina.fc6{o,...I5fc}{/*-i(w' - wkxk, \£ - ßkXk) + vkx
2

k}

where sfc = min{ [w'/wk\, l/t'/AtfeJ}-

Boundary Conditions

/o(w', //) =oo, w' < wmin -l,w'^ 0, fjf < /imin - 1, (*' # 0

A(0,0) = 0, k = l,2,...,K.

Answer

Phase 2 is divided into Phases 2a and 2b. Using either of the above

recursions, Phase 2a determines the values fk(w, ß) for k € /C, w G {wmin, Wmin +

1, . . . , W}, and £J € {^min, AW + lf • ■ • , ß}-

Subsequently, Phase 2b first redefines the lower bounds on /x and w: if

fji*(W) > c, y! = max {/z, \c]}, and w' = argminw=fe...;ir}{/i*(w) > c}; else, g' =

and w' = w. Now, define SKPE(w) as SKP1(W) with the constraint wTx < W

replaced by wTx = w. The optimal objective value p(w) of SKPE(iu) is determined

by examining all finite values of fk(w, fx) computed in Phase 2a for each w e {V, w' +

l,...,W}:

fj,&t"(w), fce/c

where U"(w) = {//,//+1,..., /i*(w)|C+(^) > -oo} for Case 1, or {//', ß'+l,..., (f(w)

\(~(p) < oo} for Case 3. The optimal objective value of SKP1(W) is then

p*{w)= min p(w).
w€{w',—,W}

15

c. Phase 3

If Phase 1 determined that ß*(W) = c, this phase extracts the optimal

solution to KP(W) as the optimal solution x*(W) to SKP1(W). Otherwise, the

optimal solution is extracted as the best solution to SKPE(w) over all w E {w', w' +

l,...,W}.

d. Model Refinements

To capitalize on the computer runtime to produce additional useful

results, the algorithm DSSKP also extracts the optimal solutions x*(a/) to SKPl(w)

for all w e {w', w' + 1, • • •, W} in the final phase.

With insignificant extra effort, this additional information might be

used to provide insight to a decision maker regarding the marginal loss of target-

achievement probability due to loss in initial wealth.

To enhance computational efficiency, the recursive computations of

fk{w,ß) in Phase 2a and exhaustive search of p(w) in Phase 2b are made only in

the range with ß < ß*(w) for each w. Because ß*(w) is the maximum feasible total

mean return given initial weight w, it follows that fk(w, ß) is invalid for values of fi

outside this range; the exhaustive search in Phase 2b need not examine these /'s.

3. Algorithm DSSKP

The DP algorithm for the SSKP (DSSKP) is presented as follows:

Algorithm DSSKP

Input: Data for SKP1(W) with K item types: integer vectors w > 0, \L > 0, integer

W > miiiitejctiii, scalar c and real vector v > 0.

Output (three possibilities):

1. If maximum feasible ß*(W) = c, optimal solution x*(W) and solution value
p*(W) to SKP(VT);

2. if ß*(W) < c, optimal solutions x*(tu) and solution values p*(w) to SKP(iy)
for aRw € {w. mirikeK u>k <w <W,w € Z+};

16

3. if p*(W) > c, optimal solutions x*(w) and solution values p*(w) to SKP(w)
for all w 6 {w : p*{w) >C,W<W,WE Z+};

/* Phase 1 */

w <- minkeKWk]

p*(w) * oo V w with w — maxfc Wk < w < W\

p*(w) <— 0 V w with 0 < w < w — 1;

For (w = w to W) {

k'(w) <- aigfnsxkeK{ft*(w - wk) + pk};

p*(w) <- p*(w- Wfc/(u,)) + Hk>{wy,

}

If (p*(W) = c) go to Phase 3;

/* Phase 2a */

<- minfeex: A**; ß<-p*(W);

Wmin - minfc wk; AW = min* //&;

If (p*(W) < c){

/fc(tü, AO < oo V k,w,p with 0 < A; < K, tumjn — maxfc Wk<w< W, and
/Vin - max* pk<p<p;

fk(0,0) <- 0 V k with 1 < k < K]

For (k — 1 to K" and w = wmin to W and // = AW to p*(w)) {

xk <- min{[w/wk\, [p/pk\}]

x'Kw, v) <- argmaxXjte{0i...,5fc}{/fc_i(w - wkxk, p - pkxk) + vkx
2

k};
fk(w, p) <- fk-i{w - wkxl(w, p), p - pkx'l(w, p)) + Vkx'fiw, p);

}

} else /* if (p*(W) > c) */ {

fk(w, p) *—hoo V k,w,p with 0 < k < K, wm\n — raaxk wk<w < W, and
Pmin - maxjb pk< p<p;

fk(0,0) ^ 0 V fc with 1 < Jfc < K;

For (A; = 1 to K and w = wm\n to W and p = //m;n to p*(w)) {

17

xk *- min{ [w/wkJ, [fi/ßkJ};

4(w, //) «- argmin^e{0,...,5fc}{/fc-i(w - wkxk, p - ^afc) + vka%};
fk(w, fi) <- A_i(w - wkxl(w, p), p - ßkx'l(w, p)) + vkx'j?(w, p);

}

}

I* Phase 2b */

lf(fi*(W)>c){

p' +-max{p,\c\};

«/ <- argmaxH^,.„iWr{/z*(W) > c};

} else {

p' <— /z; ty'«— w;

}

For (w = w' to W) {

(A*t, *t) <- aJgminMeW»(u,)ifcex:(c - p)/y/fk(w,p);

p(w) <- (c - ßt)/y/fkt(w,ßt);

k'(w) <- A;*; /z'(w) <- //*;

r&(w)<- argminu,te{wV..)U,}p(wt);

}

/* Phase 3 */

If &i*(W) = c) {

x <— 0; w <— W;

do{

^(t«) *- £*/(£) + i;

w <— tu — Wfc/(iü);

} while (w/0);

Print{"Phase 1 shows p*(",W, ") = ", c};

Print{"Solution to SKP(W) for W=",W,"is x*(W) =",x};

Print{"with optimal objective value p*{W) — \p(W)};

18

} else {

If (ß*(W) > c) Print{"Phase 1 shows ^*(", W, ") > ",c};

else /* (ß*(W) < c) */ Print{"Phase 1 shows /**(", W, ") < ",c};

For (w = w' to W) {
x <— 0; w <— w(w);

ß <— ß'(w); k <— k'(w);
do{

ajfc<-s2(t&,/x);

w <-w — WkXk;

ß *- fi - ßkXk]

k*-k-l;
} while(*ü > 0);
Print{"Solution to SKP(w) for «;=",«;, "is x*(ty) =",x};
Print{"with optimal objective value p*{w) =",p(w'(w))};

}

}

4. Computational Results

For testing the algorithm, we use the same data set as Morton and Wood

(1998), i.e., the data from Steinberg and Parks (1979), with the addition of a riskless

item type. This item type is item type 1 which has Wi = 1, pi = 1 and V\ — 0.

Morton and Wood (1998) solves SKPO(W) with the assumption of complete inde-

pendence within item types, whereas our method solves it with the assumption of

complete dependence within item types. Despite this, our method is an extension

of Morton and Wood's (1998) DP method (they denote it "DPSKP"). Hence, the

relative computational time between their DPSKP and our DSSKP may provide a

gauge for any extra complexity involved. The data are shown in Table I.

We use W = 30 and c = 60 (instead of c = 30 in the two works mentioned)

for testing. In our case, c = 30 is illogical as investing in all riskless items will result

in a total returns of 30 with certainty and meet the return threshold with probability

19

k 12 3 4 5 6 7 8 9 10 11

Vk

15 7 11 9
1 7 12 14 13
0 15 20 15 10

8
12
8

4
5
20

12 10 3 6
16 11 4 7
8 15 20 25

Table I. Steinberg and Parks (1979) data with an additional riskless item.

one. Morton and Wood (1998) programmed their algorithm in Turbo Pascal and

ran it on a Dell Latitude XPi laptop computer with a 133 MHz Pentium processor

and 40 megabytes of RAM. Our algorithm is programmed in Java 1.1.2 and run in

Microsoft's Windows 95 on a Dell Latitude LM laptop computer with a 166 MHz

Pentium processor and 40 megabytes of RAM.

For our problem, it is determined in Phase 1 that p*(W) = 50 (i.e., p*(W) < c)

and w' = 1. Hence, we obtain solutions for the range of W = 1,2,..., 30. The total

solution time, which includes the data input and solution printing, is 0.44 seconds.

We compare this to the total solution time of 0.026 seconds reported in Morton

and Wood (1998) (for all values of W between 3 and 30). Our solution time is an

order of magnitude greater than theirs although both are less than a second. This

difference may partly be due to the use of different programming languages and

different computers. Cases of ff(W) = c and p*(W) > c have also been tested by

setting W = 35 and 50 respectively. The corresponding total solution times for these

two cases are approximately 0.06 seconds and 0.94 seconds. Given the restricted time

frame within which this thesis must be completed, we state these results without

further comparative testing.

5. Comments

Similar to Morton and Wood's (1998) DPSKP algorithm, DSSKP is an exact

method to solve an SPOP. Furthermore, it is simple to program. Based on the similar

methodological extensions of basic DP algorithm as DPSKP, DSSKP can also be easily

modified to accommodate bounded variables. Morton and Wood (1998) suggest that

20

this can be done by solving the bounded-variable version of SKPE(W) which is just

a two-constraint, bounded-variable knapsack problem.

We have ignored cases in which vTx2 = 0 might be optimal. These special

cases can be easily checked in Phase 2b of DSSKP. For these cases,

(c - (J,TX)

\/vTx2

—oo if \L > c,

oo otherwise,

<S> P(rTx > c) =
1 if yU > C,

0 otherwise.

It may be of interest to the reader that it is possible to solve SKPl(VT) by

using the fact that for fixed v = vTx2 > 0 , the objective function in SKPla(W) for

fixed v is minimized when /xrx is maximized. In this case, the objective function of

SKP1(W) can be solved using the re-arranged model

p*(W) = mmmin(c - fiTx)/y/v),

where V = {v, v + 1,..., v} and [y, v] = the range of feasible total variances, y > 0.

But this approach is not advisable for solving SKP1(W) because, typically, |V| » \U\.

21

22

III. A MULTI-STAGE STOCHASTIC
KNAPSACK PROBLEM

(MSKP)

In this chapter, we present an approximate solution to a multi-stage portfolio-

optimization model using a stochastic dynamic-programming (SDP) approach. This

multi-stage problem assumes that portfolio revisions can be made at a finite number

of points evenly spaced in time within a planning horizon of fixed length, i.e., an initial

portfolio decision is made and rebalanced in stages. Within each stage of this multi-

stage stochastic knapsack problem (MSKP), complete dependence of returns within

item types is assumed. For returns among item types, there is complete independence

within each stage and between stages, i.e., we assume complete intra- and inter-stage

independence among item types.

A. MATHEMATICAL FORMULATION OF MSKP
This section presents a formulation of the MSKP using a DP-like recursion.

In our MSKP, portfolio decisions are made at points in time, £ = 0,1,...,T — 1, and

the final portfolio is evaluated at t — T. We define the interval of time between t and

t + 1 as period t+1. Hence, the portfolio selected at time t is fixed in period t + 1

and revised at time t + 1. Variables, parameters and solution sets related to time t

are labeled with the subscript t; for elements of a vector indexed by t, the index t

follows after the element index. For example, Xkt is the fcth element of vector xt.

The formulation adopts the expected utility maxim (Markowitz 1959, pp. 205-

242). Utility of a level of wealth indicates the satisfaction of an individual to that level

of wealth. To maintain continuity with Chapter II, the utility of a realization of wealth

at time T is defined to be zero unless it meets or exceeds the total return threshold c.

The utility is one if wealth meets or exceeds the threshold, i.e., the portfolio's owner

is fully satisfied with the wealth achieved. This wealth-utility relationship defines

23

the utility function at time T in our problem. A different utility function could be

specified by the model user without changing our computational framework, although

a few specialized techniques would be lost or require modification.

With a given available wealth at time T — 1, we intend to choose a portfolio

that maximizes the probability of achieving a wealth of at least c at time T. The

objective function at time T - 1 is, therefore, equivalent to determining a portfolio

with the maximum expected utility at time T when the portfolio is cashed. Thus, we

are using the expected utility maxim for our utility function in the last stage. In the

model described below, this maxim is recursively applied to the portfolio revisions at

all times t.

Indices

t possible transaction times within the planning horizon, t E {0,1,2,..., T}

Data

w* unit cost vector of all item types at time t

W0 initial wealth at time 0

c desired minimum total return, i.e., the total return threshold

rt unit return vector of the items at time t for the portfolio selected at time
t - 1; the distribution of rf is multi-variate normal with mean vector \it and
variance vector vt; rt = (rlt, r2t,..., rKt)

T; \xt = (nu, ß2t, • • •, ßKt)T', vt =
fat, v2t, • • •, vKt)

T; hence, rH ~ N(fXkt, via) V k, t

ht(W, rf xt_x) probability density function for realizing wealth W with a one-period
investment in portfolio xt_i given a random return vector rt; we disallow
negative portfolio returns so that ht(W, rjxt_i) = 0 for W < 0

Decision Variables

xf portfolio decision at time t, t = 0,1,..., T — 1

Xt{W) set of feasible portfolio decisions at time t given an available wealth of W,
t = 0,l,...,T-l

24

Ut(W) utility of realizing wealth W at time t, t = 1,2,..., T;

T^ ' ~ \ 0 otherwise

Formulation

MSKPO

U0= maxElUtfa] (ELI)
xo€Ab(Wb)

s.t. £[C/t|xw] = / C/tW/itW^x^)^ fori = l,2,...,T (III.2)

where C/t(W) = max E[Ut+1\xt] (111.3)
xt€Xt(W)

for t = 1,2,..., T - 1 and W > 0

^(^) = {xteZf|w^xt<W} (III.4)

fort = l,2J...,T-landW>0

X0(W0) = {xo€^|w^xo<W0}. (IIL5)

The intention of the objective function (III.l) is to maximize the expected

utility by selecting an optimal portfolio decision x£ for period 1 and a suite of optimal

solution sets (optimal portfolio selection policy) X* for t = 1,2,...,T — 1. (xj is

commonly called the first-stage solution or decision.) Given the definition of the

utility function at time T, the objective value Uo is the probability of achieving or

exceeding the return threshold c. Constraints (III.2) compute the expected utility,

at each time t, of portfolio decision xf_!. Constraints (III.3) show that Ut(W), the

utility of wealth realization W at time t, is actually the maximum expected utility

possible at time t+1. This constraint and the objective function clearly illustrate

25

the recursive resolution of similar sub-problems to determine the final solution for

the overall problem. The constraints (III.4) and (III.5) define feasible portfolios for

wealth W at all time t > 0, and wealth W0 at time t = 0 respectively.

B. ASSUMPTIONS AND REFORMULATION
For the remainder of this chapter, we add the following assumptions to those

of Chapter II:

1. The variance of all item types can be integerized through scaling and rounding
with little loss of accuracy, when necessary. Therefore, we assume that vk €
Z+ V k e K.

2. The unit cost and return vectors at different times in the planning horizon are
identical. Hence, w = w0 = wx = • • • = wT, and r = r0 = ri = • • • = vT.
This is for notational simplification only.

3. Each riskless item has an unit cost of one, i.e., Wi = 1.

4. The normal distribution for the total return is left-censored at total return
W = 0, i.e.,

(0 if W < 0,

f° _1 e-dAO^-/.)2 dW j£W = 0,
J-oo y/2'KV
_1 e-(i/2v)(w-tf otherwise,
V27TZ;

where ß = Atrxf_! and v = vrx£_a.

hiwy^)

5. The threshold c cannot be achieved or exceeded at the end of the planning
horizon by making only riskless investments at all stages.

Now, we formulate an approximation of MSKPO. At each time t except t = 0,

we discretize the realization of wealth W G [0, oo) into iV possible ranges:

[0,oo] = [o,^)u[^|)u...u[^-C,c)u[c,oo) (III.6)

= [W\ W2) u [W2, W3) u • • • u [WN~\ WN) u [WN, WN+1) .(III.7)

Any realized wealth W that falls in the range [Wn, Wn+1) will be mapped to a spec-

ified value Wn in that range. (In this thesis, variables, parameters and solution sets

26

related to the nth realization are labeled with the superscript n.) Of course, the

choice of Wn will affect the solutions of the model. Solving the problem separately

with the pessimistic choice Wn = Wn. and the optimistic choice Wn = Wn+1 will

give, respectively, lower and upper bounds on the optimal solution value to MSKPO.

(This works even though, strictly speaking, Wn = Wn+l i [Wn,Wn+1).) We take a

"neutral approach" with Wn = 0.5(VP + Wn+1) for n = 1,..., N - 1 and WN = c.

However, in the computational tests, we demonstrate the possible bounds on the op-

timal solution value to MSKPO by using the pessimistic and optimistic choices. The

discretized formulation is

Indices

£ possible transaction times within the planning horizon, t E {0,1,2,..., T]

n index for discretized level of wealth, n = {1,2,..., N}

Data

w unit cost vector for all item types

Wo initial wealth at time 0

c desired minimum total return, i.e., the total return threshold

[Wn, Wn+1) nth range of wealth values as defined by equations (III.6) and (III.7)

Pn(x) probability of realizing wealth W E [Wn, Wn+1) from a one-period investment
in portfolio x; Pn(x) = P{Wn < rTx < Wn+1)

Wn single representative value for wealth in range [Wn,Wn+l), n — l,2,...,N

Decision Variables

xt portfolio decision at time t, t = 0,1,..., T — 1

X" feasible set of portfolio decisions given wealth Wn is available for investment
at time t, t = 1,2,..., T - 1, n = 1,2,..., N

Up utility of nth realization of wealth at time £,£ = 1,2,..., T—1, n = 1,2,..., N;

at time £ = T, US: = [\ ^? = N' 1 0 otherwise

27

Formulation

MSKP1

U0=max.E[U1\x0] (III.8)
xoeAb

s.t. Eptl^} = J2lpn(*-JU?} for*=l»2 T (III.9)
n=l

where U? = max E[Ut+i\xt] (HI.10)

for t = 1,2,.... T - 1 and V n

A?* = {xt G Z*|wTxf < Wn} (III.ll)

for£ = l,2,...,T-l andVn

Xo = {xo G Zf|wTxo < Wo} . (IIL12)

We develop a DP-like algorithm to solve the overall problem of MSKP1. In

the algorithm, the sub-problems of MSKP1, as described by the objective function

(III.8) and constraints (111.10), are formulated as mixed-integer programs (MIPs) and

solved explicitly using a commercial MIP solver.

C. DYNAMIC PROGRAMMING FOR THE OVERALL
PROBLEM
In this section, we present a DP-like algorithm DMSKP to compute the recur-

sion for MSKP1.

1. Concept

The recursion in MSKP1 can be written in a DP formulation as:

28

DP Recursion for solving MSKP1

Optimal Value Function

U? = maximum expected utility at the time t+l given that wealth Wn is
available for investment.

Recurrence Relation for t = 0,1,...,T — 1, n = l,2,...,N

Fort = l,2,...,T-l,

maxE\Ut+i\x.t] for n = 1,2,..., N — 1, jjn = i xte*t» L + I J
for n — N.

Uo = maxE[Ui\x0}.

Boundary Conditions

T 1 0 otherwise.

Answer

Uo.

The resolution of each recursive relation can be handled by an explicit MIP formula-

tion, which will be illustrated in the next section.

It is well known that the validity of DP is founded on the principle of opti-

mality due to Bellman (any textbook on DP, such as Dreyfus and Law (1977), has

an explanation of this principle). With respect to the DP formulation above, the

principle of optimality simply states that if optimal UQ is obtained, then each partial

solution U? obtained must be optimal for its respective state n and stage t, i.e., the

optimal solution is composed of optimal partial solutions. This principle of optimal-

ity generally requires that the optimal value function be monotonic non-decreasing

in sequential stages (the monotonicity condition). Hence, conventional DP, which we

used in DSSKP, requires an additive optimal value function (or additive "accumulated

29

return function" as it is sometimes called) to ensure that monotonicity is satisfied.

The validity of our proposed DP approach to MSKP holds under an extension of the

monotonicity condition. Carraway et al. (1989) state this extended monotonicity

condition and attribute it to Mitten (1964).

2. Algorithm DMSKP

DMSKP is a simple two-phase algorithm. The first phase defines boundary

conditions, and then carries out a backward recursion from time T — 1 to 0, to

determine the optimal objective values, U? (or U0), and solutions, x£* (or XQ) for

each realization of wealth Wn. Given t and n, if the deterministic total return from

a portfolio with only riskless items meets or exceeds c, that portfolio is optimal with

U? = 1. Otherwise, U? is obtained by solving a MIP. Formulation and solution of

this MIP is represented by the function EMIP(-) in the algorithm. Phase 2 extracts

and prints the results. The detailed sequence of DMSKP is:

Algorithm DMSKP

Input: Data for MSKP1 with K item types: integer vectors fi > 0, v > 0, real vector

w > 0, scalars W0 > minfcG;cWfc, c > mw.k£jcwk, and {Wn,n = 1,2,..., N - 1}.

Output: Optimal first-stage portfolio decision XQ, and solution sets X* = {x^*,n =

l,2...,A^}Vt = l,2,...,r-l.

Function Called: EMIP(Wn, Uf+i, w, fi, v) determines an optimal portfolio decision

x£ and its utility U" at time t, given available wealth Wn, utility function values

Ut+i = (Ut+1,...,UflJ and basic problem data.

{

/* Phase 1 */

U$ <- 1; C/£ <- 0 V n = 1,2,..., N - 1;

For (t = T - 1 downto 1) {

For (n = 1 to N - 1) {

W = 0.5(W™ + Wn+1);
If (piW > c)

30

}

or -1;
x5 <- w'-

else
(ü?,xT) <- EMIP(Wn, Ut+i, w, AX, v);

}

}

x£* - W;

x£*^0V^l;

}

(üb,xS) <- EMIP(Wo, Ulf w, ix, v);

/* Phase 2 */

Print {"Solution to MSKP is:"};

Print {H = 0 : U = ",U0, "x* = ",xS};

For (t = 1 to T - 1 and n = 1 to N) {

Print {"* = »,t, " : tf = ",U?, "x* = ",xT};

}

D. EXPLICIT MIXED-INTEGER PROGRAMMING FOR
THE SUB-PROBLEMS
This section describes an explicit MIP formulation to solve any sub-problem

in MSKP1 and some proposed pre-processing steps to improve solution efficiency.

1. Model Formulation

Suppose a sub-problem requires an optimal portfolio decision at time t as-

suming that wealth W has been achieved from the investment made at time t — 1.

Extracted from MSKP1, the sub-problem is

31

EUSP

U? = maKE[Ut+i\xt]

s.t. wTxt < W

xf e Z«.

Let the standard normal quantile related to Wn given a portfolio decision x be denoted

as

Wn - MTx
£nx

y/\ TX2

where vTx2 ^ 0. Now, denoting the standard normal cumulative distribution as $(•),

we have, for n = 1,2,..., N,

$(£2|x) ifn = l,

Pn(x)=<j $(^+1|x)-$(2:n|x) ifn = 2,3,...,iV-l,

1 — «^(Z-^Ixt) otherwise,

based on the assumption of left-censored normal distribution for the total return. For

vTxf 7^ 0, the objective function of EUSP can, therefore, be re-written as

E[Ut+1\xt] = EH* (from (III.9))

= HZ2\xt)U}+1 + £ [$(zn+1*) - *(^"|xf)] U^x
n=2

+ [l-<l>(ZN\xt)}Ut
N

+l

= 1 " E(^m-^+i)*(^n+1|xt) since Ü& = 1.
71=1

32

If vTx? = 0 and xf ^ 0,

E [Ut+i\xt] = U?+l such that Wn < /zTxf < Wn+1.

Furthermore, we observe that the expected utility is a direct function of the mean

and variance of the total portfolio return. Hence, we will also focus on finding the

best mean-variance combination for the total portfolio return. We present our MIP

formulation for EUSP:

Indices and Index Sets

t index for the time at which an optimal portfolio decision is required

n index for level of wealth, n € {1,2,..., N}

k index for item type, k € K = {1,2,..., K}

i index for mean of total return, ie I

j index for variance of total return, j E J

Ji index set of variance values corresponds to a total mean with index i (Note:

/ index for quantity of an item type

Ck index set of possible affordable quantities for type-fc item, Ck 6 {0,1..., Lk}
where Lk is the maximum number of type-A; items affordable given an available
wealth at time t

n'i index for the level of wealth in which a mean total return with index i falls,
n'{ £ {l,2,...,N} (see below for further description)

Data

fii the ith. level of mean total return, fit — 0,1,..., ß

Vj the jth. level of total variance in return, Vj = 0,l,...,v

xi quantity of item to invest; xi = I

ßk unit mean return of item type A;

33

Vk unit variance in return of item type k

Wk unit cost of item type A;

W available wealth at time t

[Wn, Wn+1) nth range of wealth values as defined by equations (III.6) and (III.7)
(Note: For a portfolio with mean total return fii, n^ denotes n such that
Wn < fii < Wn+1}.)

U?+1 optimal utility of achieving wealth level n at time t+1

Decision Variables

y\ y

v'L

binary indicator variable:
\ 1 if portfolio with (/2;, Vj) mean-variance combination is selected,
I 0 otherwise V\

binary indicator variable:
„ _ / 1 if xi units of type-fc item are invested in,

ykl 1 0 otherwise

Formulation

EMIPI
N-l

«eX {j€Ji\vj^0 n=l y'.y"
Wi - Cfti)*

'Wn+1
ßi

\ß~j
y'ij (in.13)

+ E «Si»! ij
jeJi\vj=o

s.t. EE^-EEwS = 0 (111.14)

EE^-EEÄ = o (uns)

EEw« < w' (IIL16)

EE^i = i (IIL17)

Y^y'Li = lVfce/c (111.18)

y^ e {0,l}Viel, jeJt

»£ e {0,l}Vfce/C, leCk.

34

Note that if minimum and/or maximum investment levels must be specified for any

item type, this can be accommodated in EMIPI, and thus in MSKP1, by modifying

the definition of the set Ck. Furthermore, general constraints on the original xk can

be added to the model, albeit clumsily.

The objective function (111.13) maximizes expected utility in EUSP. Although

the constant 1 in the objective function is unnecessary, it is kept to clarify the link

between EMIPI and EUSP. Constraints (111.14) and (111.15) ensure that the portfolio

decision y'^ matches the total mean-variance combination selected by the indicator

variable y'{j. Constraint (III.16) limits investments by total available wealth. Con-

straint (III.17) specifies that only one total mean-variance combination can be chosen

as the solution. In a similar manner, Constraint (III. 18) restricts the model to select

only a single quantity to invest for each item type.

2. Preprocessing

If we think of an i-j combination as a grid point, it is clear that the possible

i-j combinations in EMIPI form a vast search matrix for a MIP solver to find an

optimal ytj. This matrix expands pseudo-polynomially with the order of magnitudes

of the feasible total mean and variance in return; and the solution time of EMIPI

explodes exponentially with the problem size. Hence, reduction in the size of the

search matrix is necessary to enable solution of even modest-sized problems. Let

U be the set of candidate i-j combinations for search consideration in EMIPI. We

suggest the following preprocessing steps to reduce the size of TJ and prepare data

before solving EMIPI explicitly with a MIP solver:

a. Step 1

First, for fixed wealth W, we wish to determine the set of feasible total

mean returns. A valid lower bound on feasible total return is defined by

W
a =ii c feex; ßk

Wk

where mod(a, b) denotes the remainder of a/b

35

+ /^imod(W, wk)

The upper bound ß on the total mean return is defined by the optimal

objective value of the knapsack problem KP(W). Then, we define index set 1 —

{i |For some fi{ G \fx, fi], 3 x e Z$ such that //Tx = fc and wTx = W'}.

b. Step 2

Here, we determine for each i el, a, corresponding bounded range for

total variance, [v{, Vi] for a feasible portfolio with fiTx = fii. The corresponding index

set is denoted by Ji. A valid lower bound v{ could be found by solving a convex

non-linear problem:

VMINO

Hi — min
X

T 2
V X

s.t. /xTx = ßi

T
W X = w

X > c >,

Or, we can add integer restrictions on the x and solving this model which is similar

in philosophy to EMIPI:

VMIN1

Ui = ^P 12 12 VktfVkl

s-t. 12 12 VkXiy'Li = ßi
k^ic ieck

k€K. l€£k

J2vit = ivfcG/c

i& e {0,1} V k e JC, I e Ck.

In practice, we use VMINO rather than VMIN1 because the tradeoff between compu-

tation speed and bound quality is won by the continuous model in our computational

tests.

36

There is an exceptional situation when we solve VMIN1 to get tight

lower bounds: Note that for fixed i such that fri > c, ——- < 0 for n =

1,2,..., N — 1 and Vj e [Ui, t>«]. For such an index i, the objective function of EMIPI

N-l

i- E E w-ofrl Ai
\/^

<4 + E c^i»ii
ieJi|*,-=o

is maximized when Vj is minimized. Therefore, [v^Vi] = [v^v^ and we need only

solve VMIN1 to find & = {v{}.

In general, an upper bound Vt could be found by solving VMINO with

the "min" replaced with "max" and the ceiling function replaced by a floor function.

This model, called VMAXO, is a difficult non-convex non-linear program, but it is

known that an optimal solution to VMAXO occurs at an extreme point (Bazaraa

et al. 1993, pp. 107). Hence, we can find all feasible extreme points of VMAXO

by enumerating all basic solutions, and evaluating the objective for all basic feasi-

ble solutions. The largest value yields the desired bound. (For the same reason of

computation speed advantage in the continuous model, we do not solve VMIN1 with

"min" replaced by "max.")

In particular, for fixed i and W, we try to solve all 2 x 2 systems of

equations of the form

/xTx = fii

wrx = W.

If such a 2 x 2 system has an unique solution, i.e., its determinant is non-zero, we

record the solution. If this solution x is feasible, i.e., non-negative, we evaluate the

total variance vTx2. At the end of the enumeration, the largest total variance found,

rounded down, is optimal. The algorithm to implement this procedure is:

37

Algorithm MAXVAR

Input: fi, v, w, W, K and fii.

Output: Upper bound Vi on total variance given fii

{

X < -0;

Vi --i;

For (k = 1 to K) {

For (V = k + ltoK){

det = Wkßv - ßkWk>;

If (det ± 0){
re* = (W//fc' - fiiwy)/det;

xv = {W - wkXk)/wk>;
If ((a* > 0) AND {xy > 0)){

tJi =max {vi,vl + vl};

}
}

}

}

Vi = [vi\;

}

The converse to the case in which fii > c, has mean wealth in the

smallest range, i.e., fii < W2- In this situation, the objective function of EMIPI is

maximized when Vj is maximized. Thus, [y^ Vi] — [v~i, Vi] and we can find Vi by solving

"VMAX1" which is the (unlisted) maximizing version of VMIN1.

c. Step 3

Here, we compute the standard normal cumulative probability of

Zn\(fii, Vj) for all irj combinations not eliminated in the previous steps. This is a

simple data preparation step for EMIPI.

38

d. Step 4

In this step, we determine a lower bound on the optimal objective

function value and eliminate all i-j combinations that yield worse objective values.

The lower bound corresponds to a "good" feasible solution to EMIPI found by a

heuristic solution procedure. First, we compute the objective values of EMIPI for

all i-j combinations not eliminated in the previous steps. Next, for each item type

k > 1, we enumerate all "wealth-consuming" portfolios consisting only of type-A; and

riskless items, and compute the respective objective values. The maximum objective

value found is a lower bound for EMIPI.

e. Sequence of Execution

The resulting sets XJ obtained from steps 1 and 2, together with the

cumulative probability values computed in Step 3, are applicable to all sub-problems

with same initial available wealth W regardless of time t. Hence, we first carry out

the preprocessing steps 1, 2 and 3 to generate the set XJ for each value of W = Wn,

n = 1,2,..., N -1 before executing DMSKP. For each sub-problem in DMSKP with

a given available wealth, the algorithm calls the function EMIP(-), which performs

further reduction of the corresponding input set XJ with preprocessing Step 4 and

resolution of EMIPI with a MIP solver. This method of running DMSKP with EMIPI

provides an approximate solution to MSKPO, but an exact solution to the discretized

problem MSKP1.

E. COMPUTATIONAL RESULTS

We test DMSKP on several modest-sized problems here. Problem details are

listed in Table II. Test Problem 1 is run for three choices of Wn, specifically, Wn,

0.5(Jf" + Wn+1) and Wn+1, respectively.

The algorithm DMSKP with EMIPI is implemented using the General Alge-

braic Modeling System (GAMS) (Brooke et al. 1996). Computations are performed

39

Item Types
Test Problem 1 Test Problem 2

items 1 through 6
from Table I

items 1 through 8
from Table I

Wo 30 30
c 80 80

Wn+i _wnVn^N 20 10

WnVn±N
Wn

0.5(Wn + Wn+1) 0.5(Wn + Wn+1)

Table II. Details of Test Problems 1 and 2.

on a Dell Dimension XPS D333 Pentium II computer with 196 megabytes of RAM.

Computational results for all tests are listed in Table III.

wn =
Test Problem 1 Test Problem 2

wn
0.5^" + Wn+1) wn+l

0.5(Wn + Wn+>)

Uo 0.9551 0.9974 1.0000 0.9999
Preprocessing Time 1.54 1.92 1.72 14.07

DMSKP Time 0.87 9.35 16.28 31.97
Total Time 2.41 11.27 18.00 46.04

Table III. Computational results for MSKP1 using DMSKP (Times measured in min-
utes.)

Using Test Problem 1, we compute the lower and upper bounds on the optimal

objective value of MSKP0 by using the pessimistic choice Wn = Wn and optimistic

choice Wn = Wn+1, respectively. The results are given by the U0 values in Table III.

Furthermore, the results demonstrate the non-linear relationship between U0 and the

choice of Wn: U0 for Wn = 0.5(Wn + Wn+1) exceeds the average of U0 for Wn = Wn

and Wn = Wn+1 .

The solvability of a problem using DMSKP depends very much on problem

size. In particular, solution time using DMSKP grows exponentially with the order

of magnitude of the unit means and variances of the items, the total return threshold

40

and the number of discretized wealth levels. We compare the results for both test

problems using the choice Wn = 0.5(Wn + Wn+1) to get some idea of the effect

of increased problem size on the computational effort. In this case, increasing the

number of item types by about one third causes a four-fold increase in runtime. So, it

does appear that computation times can increase significantly with increased number

of item types. In fact, the increase in problem complexity as items types are added

depends on the unit weight, and mean and variance in the return of any additional

item types. In Test Problem 2, it happens that items of type 8 have the maximum

unit variance among all item types. Hence, there is a multiplicative increase in the

size of set XJ.

For Test Problem 2, there are 112,906 i-j combinations examined by DMSKP.

Without preprocessing, this number would be about 900,000, given that ß — 128 and

v — 7031. It is therefore clear that the preprocessing to reduce the set XJ is critical

to the computational efficiency of DMSKP. In addition, further reduction in the size

of set XJ is possible if the unit variance of the item types have a highest common

factor a where a ^ 1. In such situations, we can eliminate all i-j combinations with

mod(#j, a) T^ 0 and achieve a-fold reduction in the size ofXJ, roughly.

41

42

IV. CONCLUSIONS AND FUTURE WORK

In this thesis, we have developed new methods for solving certain single- and

multi-stage stochastic knapsack problems (SKPs). The particular problems solved

are a single-stage integer stochastic portfolio-optimization problem (SPOP) with in-

dependence of returns among the various item types (example, stocks, bonds and

other financial instruments) in the portfolio, and a multi-stage integer SPOP with

inter- and intra-stage independence among item types. For both problems, there is

complete dependence of returns within each item type. Additionally, the return for

each item type is assumed to follow a normal distribution with known mean and

variance. Given an available wealth, we wish to determine a portfolio with the best

probability of achieving or exceeding a specified return threshold at the end of the

planning horizon. For the single-stage SPOP, portfolio revision is not allowed during

the planning horizon, whereas for the multi-stage SPOP, periodic portfolio revision

is allowed.

An algorithm called DSSKP is developed to solve the single-stage integer

SPOP using a dynamic-programming (DP) approach. DSSKP is implemented us-

ing the Java programming language. For a problem from the literature with 11 item

types, initial wealth of 30 and return threshold of 60, DSSKP obtains an optimal so-

lution in a fraction of a second on a laptop computer. This efficient, exact method is

easy to program; therefore, it is highly portable to different computer platforms. This

portability is desirable when DSSKP needs to be run on a more powerful machine

for a large-scale problem. We also point out that DSSKP can be easily modified to

accommodate bounded variables, which would be important if quantity restrictions

were placed on one or more item types.

For the multi-stage SPOP, possible portfolio returns are discretized into N

possible levels of wealth for each time period; the nth. range is [Wn, Wn+l), n —

1,2,..., N — 1 while the Nth range is [WN, co). Then, any return or wealth value

43

in [Wn, Wn+1) is mapped to a representative value Wn chosen from that range. For

a middle-of-the-road approach, we use Wn = 0.5(Wn + Wn+1). At each time period

but the first, we need to solve N sub-problems to determine an optimal portfolio

rebalancing decision for each of N levels of wealth. For period 1, we only need to

solve one sub-problem. The recursive resolution of these sub-problems at each time

period is handled by a DP-like algorithm, DMSKP. The sub-problems themselves are

solved with a mixed-integer programming (MIP) model, EMIPI. Using DMSKP with

EMIPI to solve the discretized multi-stage SPOP exactly provides an approximate

solution to the original multi-stage SPOP. We obtain lower and upper bounds on

the optimal objective value of the original problem through the pessimistic choice

Wn = Wn and optimistic choice Wn = Wn+1, respectively.

In this study, DMSKP with EMIPI is implemented using the General Algebraic

Modeling System (GAMS) (Brooke et al 1996). For a problem with 6 item types,

initial wealth of 30, wealth interval of 20 (i.e., Wn+1 - Wn = 20), and final return

threshold of 80, DMSKP with EMIPI obtains an optimal solution to the discretized

problem in 11 minutes 17 seconds on a desktop computer. For a larger problem with

8 item types, initial wealth of 30, wealth interval of 10 and final return threshold of

80, DMSKP with EMIPI obtains an optimal solution to the discretized problem in

about 46 minutes.

In this thesis, we have shown the relevance and efficiency of DP approaches

for solving a single- and multi-stage SKPs for portfolio optimization. It would be

more realistic to allow returns to have a general covariance matrix, as in the classical

Markowitz portfolio-optimization model (Markowitz 1952, 1959). Hence, extensions

of this thesis should investigate techniques to handle:

1. Single-stage SKPs with dependencies among item-type returns,

2. Multi-stage SKPs with intra-stage dependencies among item types, and

3. Multi-stage SKPs with inter-stage dependencies.

44

The basic model for a single-stage SKP with dependencies among item types

would look like SKP1(W), except that vTx2 is replaced by xTVx where V is the co-

variance matrix of the returns from the various item types. An integer NLP method

could be applied to solve such a problem. This method could either be a specialized

algorithm or an explicit model, to be solved using a commercial solver such as DI-

COPT (GAMS Development Corporation, 1999), which in turn calls a MIP solver

and an NLP solver. For a problem with a general utility function in the objective

function, an approximate model would look like EMIPI. Again, the variance compo-

nents would need to be modified appropriately. A fractional programming method

can be applied to such a problem. But, non-convexities can make it difficult to ensure

a global optimal solution when the probability of achieving the return threshold is

less than 1/2. (See Henig 1990 and Geoffrion 1967.)

Multi-stage SKPs with intra-stage dependencies, but with inter-stage indepen-

dence among item types might be solved in a manner similar to that of Chapter III

in this thesis. That is, the overall problem would be solved with a DP recursion and

each sub-problem would be solved by a method developed for a single-stage SKP with

dependencies among item types.

For multi-stage SKPs with inter-stage dependencies, a general model is difficult

to solve for it must handle all kinds of uncertainties, including fluctuation of interest

rates, changes in the economic health of various business sectors, etc. A limited type

of inter-stage dependence in the multi-stage SPOP could be handled by redefining

the state variable: A state would represent a certain range of wealth together with a

"state of the economy," or "economy" for short. For each economy, we would have

a different set of portfolio options available: Industrial stocks might have high mean

returns in one economy and low returns in another, but agricultural stocks would

look the same in both scenarios. A Markovian model could govern the transitions

from economy e at time t to economy e' at time t + 1 with known probability pee>t.

DMSKP and EMIPI can be easily modified to handle such models, at least in theory.

45

One time-dependent parameter that could be handled with ease is the cost

(weight) of each item type. In this thesis, we assume time-independent deterministic

costs for all item types for simplicity in notation. These weights can easily be changed

to time-and-state-dependent parameters. Hence, economy in stage t could affect the

costs of relevant item types in stage t + l.

Unequal interval widths for the wealth ranges might improve the accuracy of

the discretization. One possibility is to define the interval widths for different wealth

ranges such that the probability of achieving wealth in the nth level is the same

for all n. Such an approach would have to be approximated, however, since those

probabilities depend on the optimal values of the decision variables.

A possible improvement to the discretization approach for the multi-stage

SPOP is to view the multi-stage problem as a lattice model and adopt a sampling

approach. Specifically, importance sampling could be used to reduce the set of feasible

paths examined in the lattice model to a subset which satisfies certain measures of

"importance" (Nielsen 1996).

46

LIST OF REFERENCES

Bazaraa, M. S., H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory
and Algorithms, 2nd ed., John Wiley & Sons, Inc., New York, 1993.

Birge, J. R. and F. Louveaux, Introduction to Stochastic Programming, Springer-
Verlag, New York, 1997.

Brooke, A., D. Kendrick and A. Meeraus, GAMS Release 2.25 - A User's Guide, 2nd
ed., GAMS Development Corporation, Washington, D.C., 1996.

Carifio, D. R., T. Kent, D. H. Myers, C Stacy, M. Sylvanus, A.L. Turner, K. Watan-
abe, and W. T. Ziemba, "Russell-Yasuda Kasai Model: An asset/Liability Model for a
Japanese Insurance Company using Multistage Stochastic Programming," Interfaces,
24, pp. 29-49, 1994.

Carraway, R. L., T. L. Morin, and H. Moskowitz, "Generalized Dynamic Program-
ming for Stochastic Combinatorial Optimization," Operations Research, 37, pp. 819-
829, 1989.

Carraway, R. L., R. L. Schmidt, and L. R. Weatherford, "An Algorithm for Maximiz-
ing Target Achievement in the Stochastic Knapsack Problem with Normal Returns,"
Naval Research Logistics, 40, pp. 161-173, 1993.

Dreyfus, S. E., and A. M. Law, The Art and Theory of Dynamic Programming,
Academic Press, Inc., New York, 1977.

GAMS Development Corporation, "DICOPT," [http://www.gams.com/solvers/dicopt
/main.htm], March 1999.

Geoffrion, A. M., "Solving Bicriterion Mathematical Programs," Operations Research,
15, pp. 39-54, 1967.

Henig, M. I., "Risk Criteria in the Stochastic Knapsack Problem," Operations Re-
search, 38, pp. 820-825, 1990.

Hiller, R. S. and J. Eckstein, "Stochastic Dedication: Designing Fixed Income Port-
folios Using Massively Parallel Benders Decomposition," Management Science, 39,
pp. 1422-1438, 1993.

Kail, P. and S. W. Wallace, Stochastic Programming, John Wiley & Sons, Inc., Chich-
ester, 1994.

Markowitz, H. M., "Portfolio Selection," Journal of Finance, 7, pp. 77-91, 1952.

47

Markowitz, H. M., Portfolio Selection: Efficient Diversification of Investments, John
Wiley & Sons, Inc., New York, 1959.

Mitten, L. G., "Composition Principles for Synthesis of Optimal Multistage Pro-
cesses," Operations Research, 12, pp. 610-619, 1964.

Morton, D. P., and R. K. Wood, "On a Stochastic Knapsack Problem and General-
izations," in D.L. Woodruff, editor, Advances in Computational and Stochastic Opti-
mization, Logic Programming and Heuristic Search: Interfaces in Computer Science
and Operations Research, pp. 149-168, Kluwer Academic Publishers, 1998.

Nielsen, S. S., "Importance Sampling in Lattice Pricing Models," paper presented at
the INFORMS Computer Science Technical Section Conference, 5th, Dallas, Texas,
8 January 1996.

Pyle, D. H. and S. J. Turnovsky, "Safety-First and Expected Utility Maximization in
Mean-standard Deviation Portfolio Analysis," in Vickson, R. G. and W. T. Ziemba,
editors, Stochastic Optimization Models in Finance, pp. 235-241, Academic Press,
1975. (reprinted from The Review of Economics and Statistics, Vol. LII No. 1,
February 1970)

Sharpe, W. F., Portfolio Theory and Capital Markets, McGraw-Hill Book Company,
New York, 1970.

Steinberg, E., and M.S. Parks, "A Preference Order Dynamic Program for a knapsack
Problem with Stochastic Rewards," Journal of the Operational Research Society, 30,
pp. 141-147, 1979.

Taha, Hamdy A., Operations Research: An Introduction, 5th ed., Macmillian Pub-
lishing Company, New York, 1992.

48

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Professor R. Kevin Wood 6
Department of Operations Research
Naval Postgraduate School, Code OR/Wd
Monterey, CA 93943-5008

4. Professor David P. Morton 1
Department of Mechanical Engineering
University of Texas At Austin
Austin, TX 78712

5. Head Librarian 1
1 Depot Road
#02-01
Defence Technology Tower A
DTT Library
Singapore 109679
Republic of Singapore

6. Mr. Khoo, Wai Gea 3
Operations Research (Department)
Advance Development (Division)
DSO National Laboratories
20 Science Park Drive
Singapore 118230
Republic of Singapore

49

